The Digital Vineyard: Opportunities for Grape growers in Australia and the World

From: MNSI website.

Wine is one of Australia’s chief exports. Australia is the world’s fifth largest exporter of wine and the seventh largest producer of wine in the world. The wine industry is a significant contributor to the Australian economy. Growing conditions are, however, predicted to change with higher average temperatures, water scarcity and more pressure on land use from a growing population. The result is that wine makers will need to manage resources much more efficiently without comprising wine quality.

In the vineyard of the future, growers will use data from in-ground sensor and drones flying overhead taking multi-spectral images to better manage their crops and the environment within their vineyards. The ground sensor data and aerial imagery can be combined into metrics that growers can easily use to make decisions about growing conditions and when and where to irrigate and apply fertiliser. This is a form of precision agriculture that can target anything from larger blocks within a vineyard to small collections of plants that may need special attention.

This project takes a significant step towards this vision by developing the algorithms and software to acquire, combine, analyse and disseminate data from in-ground sensors and the multi-spectral images taken from drones. In-ground sensors provide a wealth of data about the condition of the soil such as the soil temperature, soil moisture content, salinity, pH levels and some other factors, while drones map valuable metrics for growth, early symptoms of undesirable plant health conditions, and indicators for fruit quality.

The project is developing key elements of sensor network and camera calibration, research and methods for combining the data from the different types of sensors and developing data analysis methods that will provide actionable metrics for growers. Development will focus on designing a standardised optical sensor calibration procedure, automated optical image geo-referencing and ortho-mosaic generation, dissemination and visualisation to end users.

Aerial and ground data will be collected from the Curly Flat vineyard in Lancefield (Victoria), Wynns Coonawara Estate vineyard (Treasury Wine Estates) in South Australia and Murray Valley Winegrowers vineyard in Victoria. The output will be able to produce metrics as well as clear visualisations of the winery overlaid with meaningful data.

Drone images by Teagan Glenane.


  • Ed Kazmierczak – Department of Computing and Information Systems
  • Dongryeol Ryu – Department of Infrastructure Engineering
  • Sigfredo Fuentes – Department of Agriculture and Food Systems
  • Richard Collman – V3 Alliance
  • Mark O’Connell – Department of Economic Development, Jobs, Transport and Resources

New Article: Distribution of rotundone and possible translocation of related compounds amongst grapevine tissues in Vitis vinifera L. cv. Shiraz

ArticleinFrontiers in Plant Science · June 2016

Impact Factor: 3.95 ·
Rotundone is an attractive wine aroma compound, especially important for cool climate Shiraz. Its presence in wine is mainly fromthe grape skin, but can also be found in non-grape tissues, such as leaves and stems. Whether rotundone is produced independently within different grapevine tissues or transported amongst non-grape tissues and grape berries remains unclear. The current study investigated the distribution of this compound in different vine tissues during development and studied the most likely mode of rotundone translocation – via phloem – using stable isotope feeding. In addition, local production of rotundone induced by herbivore feeding was assessed. Results showed that rotundone was firstly detected in the petioles and peduncles/rachises within the development of Vitis vinifera L. cv. Shiraz. Different grapevine tissues had a similar pattern of rotundone production at different grape developmental stages. In the individual vine shoots, non-grape tissues contained higher concentrations and amounts of rotundone compared to berries, which showed that non-grape tissues were the larger pool of rotundone within the plant. This study confirmed the local production of rotundone in individual tissues and ruled out the possibility of phloem translocation of rotundone between different tissues. In addition, other terpenes, including 1 monoterpenoid (geraniol) and six sesquiterpenes (clovene, α‐ylangene, β‐copaene, α‐muurolene, δ‐cadinene, and cis/trans‐calamenene) were, for the first time, detected in the EDTA-facilitated petiole phloem exudates, with their originality unconfirmed. Unlike other herbivore-induced terpenes, herbivorous activity had limited influences on the concentration of rotundone in grapevine leaves.

VitiCanopy: A new smartphone and Tablet PC App to assess vigour and canopy architecture of Horticultural Trees

This slideshow requires JavaScript.

Download the App from iTunes by clicking HERE

Android version soon to be released, please keep an eye to new posts at the VoF webpage.


Roberta De Bei 1, Sigfredo Fuentes 2, Matthew Gilliham 1,3, Steve Tyerman 1,3, Everard Edwards 4, Nicolò Bianchini 4,5, Jason Smith 6,† and Cassandra Collins 1,*

1School of Agriculture, Food and Wine, Waite Research Institute, the University of Adelaide,
PMB 1 Glen Osmond 5064, South Australia, Australia; (R.D.B.); (M.G.); (S.T.)
2Faculty of Veterinary and Agricultural Sciences, the University of Melbourne, Parkville 3010, Victoria, Australia;
ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, PMB 1 Glen Osmond 5064, South Australia, Australia
3CSIRO Agriculture, Waite Campus Laboratory, Private Bag 2, Glen Osmond 5064, South Australia, Australia; (E.E.); (N.B.)
4Dipartimento di Scienze Agrarie (DipSA), the University of Bologna, Area Colture Arboree, Viale Fanin 46, 40127 Bologna, Italy
5National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, 6Wagga Wagga 2678, New South Wales, Australia;
Correspondence:; Tel.: +61-08-8313-6813
Current address: Hochschule Geisenheim University, Department of General and Organic Viticulture, Von-Lade-Str. 1, 65366 Geisenheim, Germany.


Leaf area index (LAI) and plant area index (PAI) are common and important biophysical parameters used to estimate agronomical variables such as canopy growth, light interception and water requirements of plants and trees. LAI can be either measured directly using destructive methods or indirectly using dedicated and expensive instrumentation, both of which require a high level of know-how to operate equipment, handle data and interpret results. Recently, a novel smartphone and tablet PC application, VitiCanopy, has been developed by a group of researchers from the University of Adelaide and the University of Melbourne, to estimate grapevine canopy size (LAI and PAI), canopy porosity, canopy cover and clumping index. VitiCanopy uses the front in-built camera and GPS capabilities of smartphones and tablet PCs to automatically implement image analysis algorithms on upward-looking digital images of canopies and calculates relevant canopy architecture parameters. Results from the use of VitiCanopy on grapevines correlated well with traditional methods to measure/estimate LAI and PAI. Like other indirect methods, VitiCanopy does not distinguish between leaf and non-leaf material but it was demonstrated that the non-leaf material could be extracted from the results, if needed, to increase accuracy. VitiCanopy is an accurate, user-friendly and free alternative to current techniques used by scientists and viticultural practitioners to assess the dynamics of LAI, PAI and canopy architecture in vineyards, and has the potential to be adapted for use on other plants.

Keywords: canopy vigor; LAI; PAI; computer application; light extinction coefficient; image analysis; cover photography