Five Ways Technology, Machine Learning and Artificial Intelligence is Changing the Wine We Drink.

Machine Learning and Artificial Intelligence can help a great deal in vineyard operations and management to produce the best wine possible. An article discussing 5 ways that this can be done has been published in the Pursuit magazine from The university of Melbourne that showcase CUTTING-EDGE RESEARCH AND INSIGHTFUL COMMENTARY BY WORLD-LEADING EXPERTS.

All republished articles must be attributed in the following way and contain links to both the site and original article: “This article was first published on Pursuit. Read the original article.”

Advertisements

GET PUBLISHED: Uniting minds for “Emerging Sensor Technology in Agriculture”

Sensors 1

For the application of sensor technology and sensor networks in Agriculture, systems will need to provide an automated and integrated set of tools capable of standardising the key components of aerial and ground sensor data processing. What this results in is near-real-time distribution of monitored aspects (e.g. soil-plants), and the atmospheric factors for data mapping and its delivery via mobile devices/apps.

Thus, if topics such as:

  • New sensor development and applications for agriculture and forestry trials;
  • Sensor network development, data transmission, self-healing & redundancy considerations;
  • Machine learning modelling for geospatial information targeting agricultural decision making criteria;
  • Remote sensing using UAVs with sensor network technology;
  • Visualisation systems and software platforms to integrate sensor networks for decision making processes;
  • Low-cost smart sensors for agriculture; and
  • Development of integrated models with sensor networks and applications in agriculture and forestry environments;

…are what you do, excel at, and are passionate about, head over to http://www.mdpi.com/journal/sensors/special_issues/ESTA for manuscript submission information. 

And as the Guest Editors of the sensors Journal Special Issue: Emerging Sensor Technology in Agriculture highlights:

In order to be successful in overcoming the effects of climate change, and to remain competitive and sustainable as a country in the agricultural sector, there is a need to acknowledge these challenges and support research and applications in the development of new and emerging sensor technologies and their applications in agriculture.

And don’t forget to send it in before 30 March 2019 – all the best!

New Technology Applications for Agriculture: Going Beyond Awareness

Whether you are a student, farmer, corporate person, or policy maker, you are most likely aware that the Earth is changing, and not always for the better. Take the rise of the Earth’s global surface temperature since 1880 through today as an example. Our Earth is “redder” and “most of the warming has occurred in the past 35 years” (NASA, 2017).

Five-Year Global Temperature Anomalies from 1880 to 2016 (NASA, 2017)

Whilst global warming is the “big picture” on how the Earth is changing, our day-to-day life is also being affected, in terms of what we consume. For most of us, our food comes from the local market or food vendors. However, its main source is derived from farms that are facing climate-related challenges such as extreme weather events, pests and diseases, which require quick adaptations. And if farms cannot adapt, our food supply chain may be disrupted.

vine-2955829_1280

Thus, since 2012, the Vineyard of the Future (VoF), has aimed to establish a fully-instrumented vineyard using the Internet of Things (IoT) such as Unmanned Aerial Vehicles (UAVs), remote sensors, and apps. It has also acted as a test-bed for new technology applications and investigated the potential effects of climate change in different agricultural fields. To date, the VoF has worked on practical solutions such as:

  • The free VitiCanopy App that analyses the leaf area index and canopy porosity of grapevines, whereby its parameters can be related to berry quality parameters such as anthocyanin content and polyphenols.
  • Precision viticulture using UAVs for data collection on how grapevines are affected by abiotic factors (post-effect) such as frosts (Baofeng et al., 2016).
  • Biological sensors (dogs) to detect different compounds of interests, and pests such as phylloxera in viticulture (Fuentes & De Bei, 2016).
  • Robotic pourers and computer vision techniques to assess the quality traits of sparkling wines/beers based on foamability and bubble dynamics (Fuentes & De Bei, 2016).
  • The BIOSENSORY app that decodes consumer behaviour using facial biometrics, as our physiological response to stimuli is before our verbalisation of it.

In addition, new technology applications are also being developed for specific monitoring, and these include:

  • The early (pre-effect) detection on frost damage assessments in vineyards.
  • A pilot app for apples to detect sunburn risks and model final fruit-size during harvest time.
  • The detection of smoke contamination in vineyards, whereby the smoke-related compound guaiacol glycoconjugates results in undesirable aromas and flavours in wine (Fuentes & Tongson, 2017).
  • The use of non-invasive remote sensing to assess meat quality, whereby biometrics such as breathing patterns, body temperature, and heart-rate, are used to quantify the stress levels of cows.

As such, this list provides a snapshot of the VoF’s main projects in viticulture, fruit production, sensory science and animal science. Nevertheless, the end-goal remains, and that is for these solutions to be transferable to all fields of agriculture.

Remote Sensing Figure 3
A diagram representing how UAVs and remote sensing can be used to detect smoke contamination in vineyards (Fuentes & Tongson, 2017).

References

Baofeng, S., Jinru, X., Chunyu, X., Yulin, F., Yuyang, S. and Fuentes, S., 2016. Digital surface model applied to unmanned aerial vehicle based photogrammetry to assess potential biotic or abiotic effects on grapevine canopies. International Journal of Agricultural and Biological Engineering, 9(6), p.119.

Fuentes, S. and De Bei, R., 2016. Innovations and technology: Advances of the Vineyard of the Future initiative in viticultural, sensory science and technology development. Wine & Viticulture Journal, 31(3), p.53.

Fuentes, S. and Tongson, E., 2017. Vinyard technology: Advances in smoke contamination detection systems for grapevine canopies and berries. Wine & Viticulture Journal, 32(3), p.36.

NASA, 2017. Scientific Visualization Studio. [Online] Available at: https://svs.gsfc.nasa.gov/4546 [Accessed 11 December 2017].

 

The Vineyard of the Future is flying with Qantas!

Be it during takeoff, in the lounge, or online, with Qantas’ Qbusiness coverage on “wine boffins” this month, all you need is five good minutes to understand what The Vineyard of the Future is doing for the wine industry.

white-2559865_1920

From digital vineyards using drones and its MUASIP platform to monitor vast vineyard and other crop fields, to easy-to-use apps like VitiCanopy, that will instantly analyse canopy architecture, the effect of vineyard leaf canopies on the quality of grape and yields, the “holy grail for winemakers” is not out of reach (Nicholls, 2017). And if your vineyard happens to have a canine member, they could join you in the field to detect pests and diseases, as “man’s best friend” has the ability to sniff out the “bad” pheromones from insects up to 60 centimetres deep in the soil (Fuentes & De Bei, 2016).

But most importantly, as Dr Sigfredo Fuentes, Senior Lecturer in Wine Science at the School of Agriculture and Food, belonging to the Faculty of Veterinary and Agriculture from the University of Melbourne, has reiterated, “the end goal is the incorporation of technology in food security”, especially in the face of climate change.

Qantas_Wine boffin article
Qantas Spirit of Australia’s Qbusiness section on The Vineyard of the Future.

References

Nicholls, J. (2017). The Data Revolution – Wine Boffins. Qantas Spirit of Australia. [online] November 2017, p. 118. Available at: https://www.qantas.com/infodetail/flying/inTheAir/inflightMagazine/QBusiness.pdf [Accessed 4 Nov. 2017].

Fuentes, S. and De Bei, R., 2016. Innovations and technology: Advances of the Vineyard of the Future initiative in viticultural, sensory science and technology development. Wine & Viticulture Journal, 31(3), p.53.