Category: Research Grant

Melbourne Unmanned Aerial System Platform (MUASP)

Slide1There is a newly established Melbourne Unmanned Aerial System Platform (MUASP). This project has been financed by the Melbourne Collaborative Research Infrastructure Program and three University Faculties: FVAS, Engineering and Science. The funding obtained is $260K per annum, starting in 2016 for three years plus in-kind instrumentation values up to 400K including multicopters, fixed wing drones, remote sensing cameras and light-weight LIDAR. The main objective of MUASP is to establish a common UAS platform for researchers within the University of Melbourne for applications in Precision Agriculture, Disaster Management, Conservation and monitoring, Catchment energy balance modelling, Urban green infrastructure monitoring and assessment, animal stress monitoring, etc. The project will be officially launched  at the end of February (TBA). More information: Please contact Dr Sigfredo Fentes (sfuentes@unimelb.edu.au). (more…)

Modelling for Future Climate Change

By: Sigfredo Fuentes

As the effects of climate change on Australian agriculture become more apparent, the importance of monitoring changing weather conditions and their diverse impacts will grow to paramount importance. Flexible and scalable processes for data analysis and modelling, particularly image and sensor data, are an essential part of how we monitor and respond to our changing environment. But more than that, we must foster a new generation of scientists and engineers who possess not only the technical skills to analyse this data, but the critical thinking and innovative aptitude to turn it into more sustainable outcomes for our economies, communities, and the entire planet.    Full Article: ea Magazinei-mk8

What a Robot can tell you about the quality of your sparkling wine?: share a drink with FIZZeye-Robot

FULL TEXT, DOWNLOAD HERE: Research Gate: Sigfredo Fuentes

By Sigfredo Fuentes; Bruna Lima, Maeva Caron and Kate Howell

Article to come out in the May-June issue of the Wine and Viticulture Journal

PourerR2

Figure 1: 3D model of the robotic pourer.

IMG_1604Pourer1

Figure 2: Inside and outside of actual pourer.

The Australian wine industry contributes strongly to the country’s economy (Lin, 2013). Australia is the sixth largest wine producer and the fourth largest wine exporter (WFA, 2013). Sparkling wine accounts for approximately 9% of the domestic wine sales and 13% of total wine imports in Australia (ABS, 2013). Wines with dissolved carbon dioxide are also economically important for several countries, France, Spain, Italy, USA, and Chile (IWSR, 2011; CIVC, 2013). Increase in temperature and carbon dioxide levels in the atmosphere have shown to affect flavour and aroma of wines (Johnson and Robinson, 2013), decrease protein concentration in plants (Högy et al., 2009; Azam et al., 2013; Mishra et al., 2013) and increase alcohol in wines (Howden and Stokes, 2009). Consequently, climate change is expected to influence the final quality of sparkling wine, since several compounds, including protein concentration and alcohol are related to foam stability and the ability of the wine to produce foam (Pozo-Bayón et al., 2009; Coelho et al., 2011).

Figure 3: Sparkling wine pouring

The quality of sparkling wine is visually assessed by its colour, bubble behaviour, appearance (bead) and foam persistence (mousse) (Liger-Belair, 2013). However, as discussed by a number of authors, these parameters are extremely variable and are affected by pouring, reception vessel shape and type as well as temperature (Cilindre et al., 2010; Liger-Belair et al., 2012; Liger-Belair et al., 2013). Robotics and chemometrics allows us to control and monitor these parameters, and thus repeatedly measure sparkling wine for quality assessment and to correlate it with traditional measures of quality. A robotic bottle pourer has been developed to standardise time and wine volume of pouring into a standardised vessel. Images are collected automatically with a digital camera attached to the pourer and transferred to a computer. These images are then evaluated by image analysis algorithms, which convey the information into bubble size and speed, foamability (ability of the wine to produce foam), foam persistence and stability, and collar stability.

pourer3

Figure 4: Pourer in action in parallel to a sensory analysis at Moet Chandon, Yarra Valley, VIC – Australia.

As a result, this robotic pourer and image analysis algorithms, which simultaneously quantify both bubble’s individual behaviour and collectively as part of the foam, allows the development of a reproducible, easy and inexpensive method to measure sparkling wine quality. Results from this novel technology have been compared to chemometrics and sensory panel data using multivariate data analysis.

Changing the vineyard for climate change

THE EXTREME EFFECTS of climate change are taking their toll on the viticulture industry, making the future of vineyards here and abroad uncertain. Which is why University of Melbourne wine science lecturer Dr Sigfredo Fuentes and a team of researchers around the world are developing a project to better arm the industry against that change. Vineyard of the Future (VoF) is being conducted in Australia, Chile, Spain and the US.

Full Article: VOF 2014 IR

News from Chile – VoF

http://www.uta.cl > Actualidad > 26/12/2013

Durante los días 18 y 19 de noviembre del presente

Importante Dr. de Australia dictó charlas en la Facultad de Ciencias Agronómicas de la UTA

Dr. Sigfredo Fuentes del Department of Agriculture and Food Systems, Melbourne School of Land&EnvironmentUniversity of Melbourne y MEMBER OF THE VINEYARD OF THE FUTURE (VoF) INITIATIVE, Australia

Publicado por Facultad de Ciencias Agronómicas

Imagen foto_00000001Durante los días 18 y 19 de noviembre del presente año, en el marco del proyecto MECESUP UTA 1102 “Especialización interactiva y práctica de los estudiantes de la Carrera de Agronomía de la Universidad de Tarapacá, para el mejoramiento del desempeño laboral en el área de riego y fertirrigación como eje principal de una agricultura sustentable”, la Universidad de Tarapacá conto con la visita del Dr. Sigfredo Fuentes delDepartment of Agriculture and Food Systems, Melbourne School of Land & Environment University of Melbourne y MEMBER OF THE VINEYARD OF THE FUTURE (VoF) INITIATIVE, Australia.

El Dr. Fuentes, es ingeniero agrónomo de la Universidad de Talca, Chile y Doctor of Philosophy(PhD) at the Centrefor Plantand Food Science(PaFS), University of Western Sydney, Australia en Fisiología de Plantas y Riego, con mas de 40 publicaciones ISI. Durante su visita, dictó varias charlas para estudiantes en la Facultad de Ciencias Agronómicas de nuestra universidad, basada en los efectos del cambio climático en la agricultura y las nuevas y emergentes tecnologías para la investigación y adaptación a estos efectos. Destacando la utilización de drones (controladores de vuelos no tripulados y automatización para la toma de datos) llamados multicopters, cámaras infrarrojas y cámaras multiespectrales.

Gracias a su experiencia de trabajo en Australia, el Dr. Fuentes explico a los alumnos cómo en ese país han optimizado el riego para fines agrícolas, con el fin de ser más eficientes en el uso del agua y así mitigar la escasez de agua producto del cambio climático que esta sufriendo ese país. Además, presentó las nuevas tecnologías utilizadas hoy en día para monitorear el estado fisiológico de las plantas y el estado hídrico del suelo, ambos a tiempo reales. Todo esto, se realiza como se menciona anteriormente, mediante el uso de multicopters, para obtener los datos de los sensores de humedad de suelo, sensores instalados en las plantas, imágenes satelitales, estaciones meteorológicas, fotos infrarrojas cercanas y lejanas, entre otras. Con esta charla, los alumnos de la carrera de agronomía de la Universidad de Tarapacá, conocieron otra realidad, y las tecnologías de punta en Australia y a nivel mundial, toman medidas para mitigar los efectos del calentamiento global, siempre ligados al ámbito agrícola. Es importante considerar, que el grupo de trabajo del Dr. Fuentes, esta utilizando técnicas que puedan ser accesible, especialmente, con los sistemas de teléfonos celulares para medir el índice foliar, obtener fotografías para subirlas a plataformas de sistemas espectrales y así, evaluar el estado hídrico de las plantas, pero a nivel de extensiones grande de cultivos. En este ámbito, se esta redactando proyecto FONDEF IDEASen conjuntocon la Universidad de Talca (CITRA), Universidad de Melbourne y la Universidad de Tarapacá, para comenzar verdadera cooperación entre las universidades y firmar los convenios respectivos.

Imagen foto_00000002

Dr. Sigfredo Fuentes dictando charla sobre el cambio climático en la Facultad de Ciencias Agronómicas de la Universidad de Tarapacá.

Semi-automated and automated assessment of sparkling wine quality based on foam stability, assessed using a robotic pourer and image analysis algorithms

By Sigfredo Fuentes; Bruna Lima, Maeva Caron and Kate Howell

PourerR2

Figure 1: 3D model of the robotic pourer.

IMG_1604Pourer1

Figure 2: Inside and outside of actual pourer.

The Australian wine industry contributes strongly to the country’s economy (Lin, 2013). Australia is the sixth largest wine producer and the fourth largest wine exporter (WFA, 2013). Sparkling wine accounts for approximately 9% of the domestic wine sales and 13% of total wine imports in Australia (ABS, 2013). Wines with dissolved carbon dioxide are also economically important for several countries, France, Spain, Italy, USA, and Chile (IWSR, 2011; CIVC, 2013). Increase in temperature and carbon dioxide levels in the atmosphere have shown to affect flavour and aroma of wines (Johnson and Robinson, 2013), decrease protein concentration in plants (Högy et al., 2009; Azam et al., 2013; Mishra et al., 2013) and increase alcohol in wines (Howden and Stokes, 2009). Consequently, climate change is expected to influence the final quality of sparkling wine, since several compounds, including protein concentration and alcohol are related to foam stability and the ability of the wine to produce foam (Pozo-Bayón et al., 2009; Coelho et al., 2011).

Figure 3: Sparkling wine pouring

The quality of sparkling wine is visually assessed by its colour, bubble behaviour, appearance (bead) and foam persistence (mousse) (Liger-Belair, 2013). However, as discussed by a number of authors, these parameters are extremely variable and are affected by pouring, reception vessel shape and type as well as temperature (Cilindre et al., 2010; Liger-Belair et al., 2012; Liger-Belair et al., 2013). Robotics and chemometrics allows us to control and monitor these parameters, and thus repeatedly measure sparkling wine for quality assessment and to correlate it with traditional measures of quality. A robotic bottle pourer has been developed to standardise time and wine volume of pouring into a standardised vessel. Images are collected automatically with a digital camera attached to the pourer and transferred to a computer. These images are then evaluated by image analysis algorithms, which convey the information into bubble size and speed, foamability (ability of the wine to produce foam), foam persistence and stability, and collar stability.

pourer3

Figure 4: Pourer in action in parallel to a sensory analysis at Moet Chandon, Yarra Valley, VIC – Australia.

As a result, this robotic pourer and image analysis algorithms, which simultaneously quantify both bubble’s individual behaviour and collectively as part of the foam, allows the development of a reproducible, easy and inexpensive method to measure sparkling wine quality. Results from this novel technology have been compared to chemometrics and sensory panel data using multivariate data analysis.